ABSTRACT

Enzymes are currently used in various industries, most commonly in food, detergents, and pharmaceuticals production. Lipases are hydrolytic enzymes that demonstrate great potential as an alternative to conventional catalysts in a number of industrial applications. A complete understanding of enzymes, and their proteins structure and environmental behavior, can greatly aid in the further development of industrial applications. Supercritical Fluids Technology in Lipase Catalized Processes provides basic information about enzymes, their sources, reaction kinetics, and main industrial applications. The book focuses in lipases. their main sources, structure, and features, with an emphasis on their specificity and interfacial activity, and presents proven techniques for isolating, extracting, and purifying.

Comprised of six compact chapters, this comprehensive guide introduces:

  • Immobilization techniques and immobilized lipases that allow repeated use (which is essential from an economic point of view)
  • Different bioreactor configurations using immobilized lipases
  • The latest information on the available technologies in lipolytic reactions
  • The advantages of nonaqueous media in biochemical synthesis over aqueous and solvent-free systems
  • Material on the use of lipases in nonaqueous media to overcome the drawbacks usually encountered with the use of conventional chemical catalysts
  • The use of supercritical fluids (SCFs) as a green alternative reaction medium
  • Factors affecting the physical properties of lipases in this medium and, hence, their activity and stability
  • A case study using supercritical carbon dioxide (SC-CO2) for biodiesel production
  • Novel, cutting-edge technology, using immobilized enzymes to reduce the overall production cost

Supercritical Fluids Technology in Lipase Catalized Processes outlines the main industrial applications of common enzymes and discusses relevant challenges and innovations emerging in the field.

chapter 1|18 pages

Enzymes Fundamentals

chapter 2|22 pages

Lipases

chapter 3|18 pages

Lipase Immobilization