ABSTRACT

Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:

  • Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiers
  • Describes the high-frequency model and transient characteristics of metal–oxide–semiconductor field-effect transistors
  • Details active device modeling techniques for transistors and parasitic extraction methods for active devices
  • Explores network and scattering parameters, resonators, matching networks, and tools such as the Smith chart
  • Covers power-sensing devices including four-port directional couplers and new types of reflectometers
  • Presents RF filter designs for power amplifiers as well as application examples of special filter types
  • Demonstrates the use of computer-aided design (CAD) tools, implementing systematic design techniques

Blending theory with practice, Introduction to RF Power Amplifier Design and Simulation supplies engineers, researchers, and RF/microwave engineering students with a valuable resource for the creation of efficient, better-performing, low-profile, high-power RF amplifiers.