ABSTRACT

The first part of the book gives a general introduction to key concepts in algebraic statistics, focusing on methods that are helpful in the study of models with hidden variables. The author uses tensor geometry as a natural language to deal with multivariate probability distributions, develops new combinatorial tools to study models with hidden data, and describes the semialgebraic structure of statistical models.

The second part illustrates important examples of tree models with hidden variables. The book discusses the underlying models and related combinatorial concepts of phylogenetic trees as well as the local and global geometry of latent tree models. It also extends previous results to Gaussian latent tree models.

This book shows you how both combinatorics and algebraic geometry enable a better understanding of latent tree models. It contains many results on the geometry of the models, including a detailed analysis of identifiability and the defining polynomial constraints

chapter 1|8 pages

Introduction

part |2 pages

I Semialgebraic statistics

chapter 2|30 pages

Algebraic and analytic geometry

chapter 3|30 pages

Algebraic statistical models

chapter 4|30 pages

Tensors, moments, and combinatorics

part |2 pages

II Latent tree graphical models

chapter 5|32 pages

Phylogenetic trees and their models

chapter 6|26 pages

The local geometry

chapter 7|30 pages

The global geometry

chapter 8|12 pages

Gaussian latent tree models