ABSTRACT

Structural Health Monitoring and Integrity Management is a collection of the papers presented at the 2nd International Conference of Structural Health Monitoring and Integrity Management (ICSHMIM2014, Nanjing, China, 24-26 September 2014), and addresses the most recent developments in the field of Structural Health Monitoring (SHM) and integrity ma

chapter |1 pages

Session 1: Advanced sensing technology

chapter |5 pages

 (x)  (x)  (x)

chapter |4 pages

Study on integrated sensor for metal structure fatigue monitoring

Rong Hong Cui, Yu Ting He, Bo Jing & Bo Hou

chapter |4 pages

Binocular stereo vision measurement system based on SOPC

Jie Tian, Guanglong Wang, Jinlun Li, Fengqi Gao & Zhongtao Qiao

chapter |7 pages

Forklift turning and braking stability analysis

Xinhua Wang Yinmin Liu Guojian Huang

chapter |1 pages

Session 2: Novel signal processing

chapter |4 pages

Sparsity-enabled denoising method based on tunable Q-factor wavelet transform for bearing fault diagnosis

Baoqing Ding, Chaowei Tong, Wei Xin, Shibin Wang & Xuefeng Chen Wenliang Xu & Zhe Chen

chapter |4 pages

An online error correction method based on odometer and MIMU

Tao Lai, Guanglong Wang, Wenjie Zhu, Fengqi Gao & Zhongtao Qiao

chapter |3 pages

ϕ (i −1) − 2ϕ (i) +ϕ (i +1)

chapter |2 pages

Power spectral density in seismic qualification of nuclear equipment

Zaozhan Sun K(Z,W ,[)](W

chapter |2 pages

^ <W `

chapter |5 pages

Research on ultrasonic phased array signal processing based on compressed sensing

Yajie Sun, Jian Jiang & Yonghong Zhang Yajie Sun & Sai Ji

chapter |3 pages

coils is also presented in Section 2. The simulation produced by the Helmholtz coils, which damages the results about the optimum parameter for Helmholtz uniform magnetic field. Therefore, theoretical coils are presented in Section 3. Finally, conclusion parameters of Helmholtz coils cannot be used and further work are outlined in Section 4. directly in edge detection. By extracting temperature information using COMSOL via the AC/DC module, we can confirm which optimum parameters 2 METHODOLOGY AND EXPERIMENT SETUP of Helmholtz coils can produce most effective Helmholtz coils are a special arrangement of air-excitation for edge detection. cored coils, and they are all used as a means of This simulation is conducted using COMSOL generating magnetic fields that are uniform over a multiphysics FEM simulation software via the volume (Cakir ). According to Biot-Savart AC/DC module. Fig. 1 shows the constitution of law, magnetic flux density at any point on the axis of Helmholtz coils testing, where r is the minor radius Helmholtz coils can be calculated from Equation (1) of Helmholtz coils, r is the major radius of (Bronaugh ): Helmholtz coils, h is the sample height, d is the N Ir N Ir distance between Helmholtz coils edge and sample H  H H   (1) edge, and z is the distance between Helmholtz coils. 2  r a  2  r a  The physical characteristics of the model to be simulated and studied are given in Table 1. The According to the definition of Helmholtz coils, geometry of the sample is 40502 mm ; the r  r  r , N  N 1 and 2a  2a  r . major and minor radii of Helmholtz coils are equal Using Taylor series expansion and calculating the to 10 mm and 2 mm, respectively, and the turns differential of H (0) (when z  0 ), after some equal 1. The excitation module is a small period (0.3 s) of high-frequency current (256 kHz). manipulation, Equation (1) becomes Table 1. Electrical and thermal parameters for steel  144  z   used in the simulation H ( z )  H (0)   1   125  r   (2)     

to [–1,1], using variance to indicate the homogeneity. In all situations, the optimal parameter

chapter |4 pages

d2yε(x)

chapter |1 pages

Session 3: Damage diagnosis

chapter |4 pages

Nonlinear ultrasonic detection of bonding interface gap defect

Zhouyang Bi, Jianhui Chen & Guanglong Wang

chapter |4 pages

Acoustic emission detection in the inspection of wrapped cylinders

Xuerong Ma, Li Yao, Jifeng Zuo, Kaibai Yue, Xiaohui Chen & Jun Lu

chapter |3 pages

Structure crack monitoring based on long-gauge FBG sensor

Wentao Zhang & Fang Li Lin Huang Ce Bian, Hongbin Xu & Yanliang Du

chapter |1 pages

Sensor performance analysis for crane structural health monitoring system

Guojian Huang Donghui Wang, Min Chen & Xinhua Wang

chapter |5 pages

Study on aircraft structure strain-gage loads-monitoring method

Yuan Tian & Yingchun Xiao

chapter |6 pages

Opportunities and challenges of aircraft SHM

Yingchun Xiao & Xiasheng Sun

chapter |4 pages

Multipoint bolts loosening detection system based on active RF

Shaowu Fu & Jian Wu Lihua Liu & Xia Zhao

chapter |3 pages

Monitoring of brake performance in service of hoisting machinery

Jianhua Gong, Keqin Ding, Lei Wang & Chuanqi Zhu

chapter |4 pages

Research on health monitoring decision-making method of in-service hoisting machinery

Guan-Si Liu, Ke-Qin Ding, Fan-Fu Kong, Hua-Zhong Wei & An-Qing Shu

chapter |1 pages

Risk analysis method for mobile cranes and its application

Xu-Sheng Zhou, Ping Zhou & Shi-Yong Hu

chapter 9|3 pages

9 . . TThhee si stiu tu at aito io nnooff fu fu ll l -l t -i t m im e e rrrr   r r      rrrr   r r   ( b ( b , b , b ,  ,  , b , b ) ) = ( a ( a , a , a ,  ,  , a , a ) )      =             r  rrr    r r  (4) (4) TThhee ultimate goal of using the FAHP is to find ultimate goal of using the FAHP is to find oouuttth th eere re la la ti t v iv eewwee ig ig hhttooffeeaacchh ind indic ic a a to to r r to to oovvee ra ra ll l l ggooaallooffAA . . A A ss s u su m m in in ggth th aattth th eewwee ig ig hhttvvaa lu lu eevveecc to to rrooff eeaacchh in in d d ic ic a a to to rroonn th th eemm id id d d le le ti t e ie rrBB re re la la ti t v iv e e to to th th e e oovvee ra ra ll llggooaallooffAAisisaassfo fo ll l o lo wws: s : W W = { { w w , w , w ,. , . . . . . . w .w } } = (5 (5) ) The weight value vector of each indicator on the in in ddeexxla la yyeerrCCre re la la ti t v iv eeto to t h th eemm id id d d le le l a la yyeerrBBisisaassfo fo l-l- lo lo wws: s : (6 (6 ) ) AAnnddth th eewwee ig ig hhttvvaa lu lu eevveecc to to rrooffeeaacchhin in d d ic ic a a to to rroonnTThheeppoo ss sisb ib il iilt ity the index layer C relative to the overall goal of A is y in in fl f u lu eenncceefa fa c c to to rrin in d d ic ic a a to to rs rsaannddth th e e the index layer C relative to the overall goal of A is as follows: ccoonn se se qquueenn ti t a ia llin in fl f u lu as follows: eenncceefa fa c c to to rrin in d d ic ic a a to to rs rsaa re re d d iv iv id id eedd in in to to fo fo uurrdd if iffe fe re re nntt le le vvee ls l , s , eeaacchh le level corre vel corresp sp oonndd in in g g (7 (7 ) ) to to d d if iffe fe re re nnttgg ra ra ddeess ( a (a sssh sh oowwnnin in TTaabb le le 2 2 ). ) . In In t h th is isaa rt ritc ic le le , , t h th eefu fu zzzzyyccoonn si ssitse te nnttju ju ddggmmeennttmmaa --tr tirx ix eessoofffa fa il i u lu re re p p ro ro bbaabb il iiltiy ty aannddfa fa il i u lu re re c con onse se qquueennccee Table 2. The Indicator Score Table of the Mobile a a re re e e st s a ta b b li lsih sh eeddbbaa se se ddoonnth th eefu fu zzzzyyccoonn si ssitse te n nt matrix Table 2. The Indicator Score Table of the Mobile t matrix Crane Risk Factors bbyyPP ro ro fe fe ss s o so r r Ji J a ia nnggLL ia ia nnggkkuui. i . AAccccoo rd rd in in g g to to th the Cr Fv a tors wwee ig ig hhttvvaa lu lu eeccaa lc lc u u la la ti t o io nnmmee th th ooddoofffu fu zzzzyyccoonn si ssitse te nntt matrix matrix bbyyPP ro ro fe fe ss s o so rrLLvvYYuuee ji j n in , , f u fu zzzzyyccoonn si ssitse te nnttmmaa --tr tirx ix wwee ig ig h h ts tsWWccaannbbeeeexxpp re re ss s e se ddaassfo fo ll l o lo wws: s : 3 Determination of Index Weight (8 (8) ) AAccccoo rd rd in in g g to to th th eeFFAAHHPP , , wwee ig ig h h ts tsooffpp ro ro bbaabb il ili The FAHP ity ty The FAHP isisuu se se ddto to ddee te te rm rm in in eeth th eein in ddeexxwwee ig ig hht. t . A A indicators and consequential indicators are factor set is: U = {u , u , …, u }. The evaluation set indicators and consequential indicators are oobb ta ta in in eedd , , factor set is: U = {u, u, …, u}. The evaluation set as shown in Table 3 and Table 4.

manag 10. Equipment management 10. Equipment management Management 12. Regular maintenance and inspection inspection 13. Use of life 13. Use of life The FAHP