ABSTRACT

Melding basic and clinical science, this reference provides a comprehensive overview of the roles that biophysics, photochemistry, and computational modeling play in the biomedical applications of fluorescence spectroscopy and imaging. Penned by pioneering researchers, the Handbook of Biomedical Fluorescence discusses fundamental aspects of fluorescence generation in organic molecules within tissue, theoretical and experimental views of how light propagation in tissue can be used to interpret fluorescence signals, endogenous and exogenous fluorescence agents in medical or basic research studies, and radiation transport, diffusion theory, and the Monte Carlo method.